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- Background on ocean acidification

- Why are invertebrate larvae more susceptible to
ocean acidification?

- Tools for investigating responses to ocean :
acidification |

- The integrated physiological response of oysters

to ocean acidification
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Ocean Chemistry Changes with Increased pCO2

» Hydrogen ion concentration goes up
- pH goes down ("acidification”)
- Saturation state of carbonate ion decreases
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Populations in a changlng climate




What about species that already inhabit
a variable environment?




The nearshore environment

Gruber et al. 2012

Bakun et al. 2010
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Effects of ocean acidification on larvae

Calcification

Invertebrate larvae [ S
at low pH are N
frequently smaller
than ambient pH Calcifying compartment
Counterparts may be difficult to isolate

, ‘ or may require relatively
e.g. Kurihara et al. 2007 more carbonate

e.g. Waldbusser et al. 2013

Ecoloav:

Energetic constraints
from ocean

acidification stress
may lead to
developmental
delay.

e.g. Stumpp et al. 2011
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Effects of ocean acidification on adults
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Why are invertebrate larvae more
susceptible to ocean acidification?

The larval stage is crucial to ey ' -
—~ Is there any evidence of resilience to

Sl Tl QO k3 ' elevated pCO,in local oyster
ocean acidification affect the o o y
5 _ populations?

earliest stages of development?
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Water is filtered and
stripped of CO»

control: 400 patm
elevated: 700, 1000 patm

e ——— |

pCO5 controlled in
each cooler
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Lar;;fa_éjgreﬁﬁ; between
days 1 and 3 at 400 Shell deposition slowed by 3 da
and 700 patm, but not post-fertilization at 1000 patm.

at 1000 patm.
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Conceptual Model

Ocean acidification

Imposes stress, changes
Moderately * resource allocation _’
elevated pC02 B ﬂ

Dlﬁ:e I'el‘lt erlel'ge'[ic demands a.t Onset Of For more information, see Timmins-Schiffman et al. (2012) Elevated pCO2

causes developmental delay in early larval Pacific oysters, Crassostrea gigas.
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maintenance of pH

growth and

maintenance of pH
P development

growth and
development

shell deposition

response to stress shell deposition

response to stress

low pCO> high pCO,
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Proteomics is a viable tool for determining
changes in resour ion.




Main functions of ctenidia
include ion regulation,
respiration, and sorting of
food particles.

Environmental change
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The Gill Proteome

1,043 proteins identified
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1,043 proteins identified

Death Cell-cell signaling

Developmental processes Cell organization and biogenesis

DNA metabolism
Cell cycle & proliferation

Cell adhesion

Protein metabolism

RNA metabolism Stress response
Signal transduction
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The gill tissue proteome has an over-representation

of some biological processes, providing insight into
tissue-specific functions.

REVIGO Gene Ontology treemap
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Proteomics Is a viable tool for determining
changes in resource allocation.

The ctenidium, as the
interface between the oyster

and its environment hasa B
large, multifunctional
proteome.

For more information, see Timmins-Schiffman et al. (2013) Shotgun proteomics as a viable approach
for biological discovery in the Pacific oyster. Conservation Physiology.
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ocean acidification

There are signs of resilience to ocean acidification:
+ New shell was depaosited
« Fatty acid reserves not affected
- Response to heat shock not affected
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Application of proteomics to investigate the

response of oysters to ocean acidification and a
second stress.

oyster response to
ocean acidification

How are resources allocated
PN during environmental stress?

YR ow do interactions
CEEEREY 2among processes change

during exposure to ocean
acidification?
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Lipid reserves were
maintained.
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Buoyant weight at beginning and end of experiment

400, 800, 1000, 2800 patm

All oysters grew during the
month-long experiment and
there was no effect of pCO,
on growth.




Ocean
acidification
affected
both micro-
hardness
and fracture
toughness.

400, 1000, 2800 patm
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Whole body
tissue fatty acid
profiles.
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There was no change In
fatty acid profile due to
ocean acidification.
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Does lethal heat temperature change if oysters are
exposed to ocean acidification? 400, 800, 1000, 2800 patm

E 42°C

Cumulative Mortality

Day Post-Heat Shock

Ocean acidification did
not affect susceptibility to
acute heat shock.
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Which functional molecules change in response to
ocean acidification? In response to mechanical
stress at high and low pCO,? 400, 2800 patm

Oyster encounters
ocean acidification

Resources normally allocated
to other processes are needed
to combat ocean acidification

Immune

repair  response Cellular stress: elevated
expression of proteins
Changes in energy Lipid DNA repair involved in antioxidant
metabolism Detabolsm | changes to - ol response, apoptosis,
metabolism | energy budget O general stress response
Gluconeogenesis/ ST A K '
glucose production by /\/\'/ pr0t8| ns

_ damage -}.'

Unsaturation of
atty acids

Antioxidant
- response

Increased metabolism creates
more reactive oxygen species
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Expression at 400 patm

Resources normally allocated
to other processes are needed
to combat ocean acidification

Muscle

growth/ o une

repair response

Changes in energy Lipid DNA repair
- metabolism Ve 2
metabolism Caactoee | Changes to P

metabolism | €nergy budget

Gluconeogenesis/

lucose production RS /\./\/

RO DrOGUEC protein/cell ~
damage _.'

Unsaturation of
atty acids

2~ Antioxidant
0. response

Increased metabolism creates
more reactive oxygen species
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Cellular stress: elevated
expression of proteins
involved in antioxidant
response, apoptosis,
general stress response
proteins




Changes in energy
metabolism

Lipid
metabolism

Galactose

metabolism
Gluconeogenesis/
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ocean aclidification

Expression at 400 patm

Resources normally allocated
to other processes are needed
to combat ocean acidification
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Cellular stress: elevated
expression of proteins
Involved In antioxidant
response, apoptosis,
general stress response
proteins
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Mechanical stress stimulates a general stress

response in oysters.

How is the general stress response affected by (
ocean acidification? 400, 2800 paim

Carbohydrate
metabolism was
more affected at
high 2800 patm,
especially in terms
of using storage
carbohydrates.

Greater antioxidant response at high pCO»

"Normal" apoptosis and cell
stress responses change
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Mechanical stress stimulates a general stress

response in oysters.
How is the general stress response affected by

ocean acidification? 400, 2800 patm
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Carbohydrate
metabolism was
more affected at
nigh 2800 patm,
especially in terms
§ of using storage
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Mechanical stress stimulates a general stress

response in oysters.

How is the general stress response affected by (
ocean acidification? 400, 2800 paim

Carbohydrate
metabolism was
more affected at
high 2800 patm,
especially in terms
of using storage
carbohydrates.

Greater antioxidant response at high pCO»

"Normal" apoptosis and cell
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There are signs of resilience to ocean acidification:
- New shell was deposited
- Fatty acid reserves not affected
- Response to heat shock not affected

But there were limitations to this resilience:

- Integrity of new shell was compromised

- Proteins from diverse pathways/processes were
affected by ocean acidification, implying wide-
ranging effects on the organism-environment
interaction

- The response to an additional stress was
significantly altered, revealing that ocean
acidification may inhibit how the oyster responds
to other environmental changes




Conclusions

The impacts of ocean acidification are negative,
but the key to acclimatization or adaptation lies in
the variability of responses. _ _
In adult bivalves, increased

This variahility has been observed - : access to food mitigates
between species, habitats, family . the effects of ocean
groups, and offspring of adults b -4 \ acidification.
exposed to difference pCO2. ot

Could resistance to ocean
acidification lie in the phenotypes
that more efficiently use energetic
resources?
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Conclusions

The impacts of ocean acidification are negative,
but the key to acclimatization or adaptation lies In

the variablility of responses.
In adult bivalves,

y has been observed . =l access to food m
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| to difference pCO2.




the variability c

This variability has been observed
between species, habitats, family
groups, and offspring of adults
exposed to difference pCO?2.




In adult bivalves, increased
access to food mitigates
the effects of ocean
acidification.
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Could resistance to ocean
acidification lie In the phenotypesk
that more efficiently use energetic

resources?
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